
Cuckoo For COCO Captions: Image Description with
CNNs and LSTMs

Rye Gleason

Benson Duong

Takuro Kitazawa

Jeremy Nurding

Abstract

In this project, we trained an image captioner with CNN (modified alexnet or pre-
trained resnet) and LSTM, and did hyper-parameter fine tuning, changing hidden
size. We found that pre-trained yields better results. In addition, when generat-
ing with temperature (which divides the softmax), we saw that higher values of
temperatures worsen the resulting captions.

1 Introduction

The goal of the project is to generate text captions given images. The approach used is getting a
traditional convolutional neural network to embed 2D images into fully connected vectors which
will hold latent representation of the features and elements in the image; this is then fed into a
recurrent neural network using LSTM’s, with (already provided captions that are also embedded
and put in every time step following the first image), that then predicts the sequence of words.
By doing so, images alone can be fed first into the model and output predicted text captions. 2
architectures were used for the preliminary CNN, which were a modified alexnet, and a pretrained
resnet. PyTorch was used. Further experimentation was done with hyper-parameter fine-tuning on
the hidden size hyperparameter.

2 Background and Related Work

Resources included the pretrained Resnet (https://pytorch.org/vision/stable/models.html),
the COCO 2015 Image Captioning Task (https://cocodataset.org/)
which has a dataset with images and corresponding captions. Pytorch
documentation pages include those for implementing pretrained weights
(https://d2l.ai/chapter computer-vision/fine-tuning.html) , and LSTM
layer documentation and teacher forcing:

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html,
https://pytorch.org/tutorials/intermediate/seq2seq translation tutorial.html

Two previous papers using COCO are ”Improved Image Captioning via Policy Gradient Optimiza-
tion of SPIDEr” and ”Rich Image Captioning in the Wild,” which use COCO as a benchmark for
testing SPIDEr, a replacement for BLEU; and several new advanced imaged captioning models,
respectively.

1



Table 1: CNN Layers

Layer Input Channels Output Channels Stride Size Kernel Size Activation Padding Size
conv1 3 64 4 11 ReLU 0
maxpool1 64 64 2 3 Identity 0
conv2 64 128 1 5 ReLU 2
maxpool2 128 128 2 3 Identity 0
conv3 128 256 1 3 ReLU 1
conv4 256 256 1 3 ReLU 1
conv5 256 128 1 3 ReLU 1
maxpool3 128 128 2 3 Identity 0
adaptive avgpool 128 128 1 1 Identity 0
fully connected 1 128 1024 N/A N/A ReLU N/A
fully connected 2 1024 1024 N/A N/A ReLU N/A
fully connected 3 1024 300 N/A N/A Identity N/A

3 Models

The model used for this project was a Convolutional Neural Network (CNN) encoder combined
with a Long Short-Term Memory (LSTM) decoder. The CNN used is a variant of AlexNet, and
its architecture is shown in table 1. The LSTM used has 2 layers with a hidden size of 512 units,
an embedding size of 300 units. It uses biases, and has no dropout. Finally, in some experiments
we replaced our custom CNN with a pretrained ResNet. The ResNet architecture is best known for
introducing ”skip” gates, which allow for each layer of the network to be calculating only residuals,
not the entire new activation value. This helps deal with the vanishing/exploding gradient problem.

For our experiments, we decided to vary the number of hidden units in the LSTM. We were curious
if 512 units was overkill, and if the LSTM could perform as well with fewer units, and therefore
fewer weights, so we also tried training a version of the network with 256 hidden LSTM units. This
gives as a total of 4 models: our custom CNN with a 512-unit LSTM, called ”custom 512,” ResNet
with a 512-unit LSTM, called ”ResNet 512,” our custom CNN with 256 hidden units, called ”custom
256,” and ResNet with 256 hidden units, called ”ResNet 256.”

4 Results

BLEU scores and test losses for all models are shown in table 2. A possible reason why Custom
CNN didn’t work as well as ResNet was because the custom was trained from scratch whereas the
resnet was already provided with pre-trained weights, possibly optimized on GPUs and training
time far better than any of our teammates could muster. There are also specific qualities of resnet
that give it advantageous results over other architectures, namely its use of residual skip connections
during backpropagation. Both of these models outperformed their counterparts since having a higher
hidden size means more weights and in turn more degrees of freedom to learn the model.

Table 2: BLEU Scores
Name BLEU-1 BLEU-4 Test Loss

Custom 512 45.53% 1.47% 1.38
Custom 256 45.03% 1.43% 1.40
Resnet 512 62.88% 5.01% 1.34
Resnet 256 61.9% 4.29% 1.48

The best custom model, custom 512, has a test loss of 1.38, and the test loss of the best ResNet
model, ResNet 512, is 1.34. The training and validation loss curves for those models are shown in
figures 1 and 2, respectively. Both models have a rather wide difference by the 10th epoch. Another
similarity is that the training loss dips below the validation loss by the 2nd epoch, or roughly around

2



it. One difference is that the pre-trained model’s validation loss is less smooth than the Custom
CNN’s validation loss. Another difference of course is that the custom 512 model has a higher
validation loss than the ResNet 512 model.

Figure 1: Training and validation loss curves for the ”Custom 512” model, the better-performing
custom model.

5 Captions

See figures.

6 Discussion

Our results show that ResNet preformed much better than our Custom CNN. One reason ResNet
outperforms our CNN is because it overcomes the vanishing gradient problem by creating multiple
layers, skips layers, and reuses previous layers. By overcoming the vanishing gradient problem,
ResNet is able to make a model with thousands of convolutional layers. Meanwhile, our Custom
CNN only uses 5 convolutional layers. For our Custom CNN, increasing the number of hidden
layers improves the performance of our model. However, once the number of hidden layers becomes
greater than the optimal number of hidden layers, the time complexity of our model increases faster
than the accuracy gained by the model.

7 Team Contributions

7.1 Rye

Implemented ResNet CNN. Did debugging.

3



Figure 2: Training and validation loss curves for the ”ResNet 512” model, the better-performing
ResNet model.

7.2 Benson

Worked on Custom CNN. Worked on portions of LSTM (the non-teacher forcing part). Did debug-
ging.

7.3 Takuro

Worked on LSTM except the non-teacher forcing part. Did debugging.

7.4 Jeremy

Worked on experiment.py. Ran Custom CNN model with lower hidden size. Wrote discussion
section in report.

4



Figure 3: ”Good” captions generated by Custom 512 at various temperatures:
0.4: a bathroom with a sink and a toilet
5: if magazine roll chipped and ovens bag bakers license city can scrubland baseball attire tad eaten
computer vending virgin permitting
0.001: a bathroom with a sink, toilet and a shower.
Deterministic: a bathroom with a sink , toilet and a shower.

Figure 4: ”Good” captions generated by Custom 512 at various temperatures:
0.4: a man in at a table with a plate of food
5: possible sideways icebox activities during shake checkerboard clocks pittsburgh overlooking ti
mariner filling manuals pipe fan contrasting checks cancer
0.001: a man is holding a banana in his hand.
Deterministic: a man is holding a banana in his hand.

5



Figure 5: ”Good” captions generated by Custom 512 at various temperatures:
0.4: a woman man riding a surfboard on a wave in the ocean.
5: hotels connect brim jumping reach northern tried nathans demonstration stack hood router mane
log linger fries somewhat dispensers swing rested
0.001: a man on a surfboard riding a wave.
Deterministic: a man is riding a horse in a field

Figure 6: ”Bad” captions generated by Custom 512 at various temperatures:
0.4: a woman holding a baseball racquet at a tennis ball.
5: mark beaming and controlled landscape sideways booth 1960s paneled whizzes eagles threw
bumper-to-bumper corner crowded results phillie 1897 strings horizontal
0.001: a man is riding a motorcycle on the street.
Deterministic: a man is riding a motorcycle on the street.

Figure 7: ”Bad” captions generated by Custom 512 at various temperatures:
0.4: a man is sitting a a frisbee wii controller a living room .
5: kitchen artichokes establishments boogey teddybears horizontal seatbelt country engines conver-
sations microwave touches grafitti doors antelope couple vigorously ribbon candid yacht
0.001: a man is holding a banana in his hand.
Deterministic: a man is holding a cell phone in his hand.

6



Figure 8: ”Bad” captions generated by Custom 512 at various temperatures:
0.4: a woman in a black is tie standing standing. holding man is talking a phone phone.
5: weds , nutella wearing pick ramekin glare itching unique chickpeas vendor colorless everywhere
satchel observed crinkle seperating beginning severed sizes
0.001: a man in a suit and tie standing in front of a tv.
Deterministic: a man in a suit and tie standing in front of a tv.

7



Figure 9: Images with corresponding ”good” captions generated by ResNet 512 at various tempera-
tures.

8



Figure 10: Images with corresponding ”bad” captions generated by ResNet 512 at various tempera-
tures.

9


	Introduction
	Background and Related Work
	Models
	Results
	Captions
	Discussion
	Team Contributions
	Rye
	Benson
	Takuro
	Jeremy


